Sie können navigieren mit Taste 1  lesen mit Taste 2  die Sprache umschalten mit Taste 3  sich anmelden mit Taste 4   zum Ende springen mit Taste 5

Hochschule Ravensburg-Weingarten Winter 2019/20

Zur Startseite springen Startseite Zurück zur letzten besuchten Seite springen Zurück LSF-News LSF-News LSF Online-Hilfe LSF Online-Hilfe Vorlesungsverzeichnisse (PDF-Download) Vorlesungsverzeichnisse (PDF-Download) Semester wählen:   Winter 2019/20 deutsch  English 

 
Keine Einordnung ins Vorlesungsverzeichnis vorhanden.
Veranstaltung ist aus dem Semester SS 2019 , Aktuelles Semester: Winter 2019/20

3213   Theoretische Informatik

Vorlesung/Praktikum SS 2019    Sprache: Deutsch    8 SWS    
 
Laut SPO für:
Informatik, Abschluss 90,   ( 2. Semester ) - ECTS-Punkte : 10     - Kategorie : Pflichtfach    
 
Ausrichter:
Masterstudiengang Informatik
 
Verantw. Dozent:
Mauser
 
 
Termin: Mittwoch   16:00  -  19:15    wöchentl       Raum :   L129   Gebäude L  

Freitag   08:00  -  11:15    wöchentl       Raum :   V108   Gebäude V/Laz1  

 
Lernziele:
Ziel des Faches Theoretische Informatik ist es, die theoretischen Grundlagen von Logik, formalen Sprachen, Automaten, Petrinetzen, Berechenbarkeit und Komplexitätstheorie zu vermitteln.

Die Prädikatenlogik als wichtige Grundlage für formale Verfahren in Programmverifikation, Hardwaredesign und künstlicher Intelligenz wird von Grund auf als formale Sprache mit deklarativer Semantik eingeführt. Der für automatische Beweiser und Verifikationssysteme wichtige Resolutionskalkül wird ausführlich behandelt. Es wird ein vertieftes Verständnis von formalen Sprachen und Maschinenmodellen als Voraussetzung für die Entwicklung von Suchmaschinen, Lexern, Parsern und Compilern vermittelt. Die Möglichkeiten der Analyse von formalen Modellen werden anhand von Petrinetzen dargesetllt. Weiter werden die Grenzen der Berechenbarkeit erlernt. Die Studierenden sollen verstehen, dass es Funktionen gibt, die ein Computer prinzipiell nicht berechnen kann. Die berechenbaren Sprachen werden schließlich in der Komplexitätstheorie in Klassen eingeteilt.

Im Einzelnen werden folgende Kompetenzen vermittelt:
o Zentrale Ergebnisse zu Aussagenlogik und Beweisverfahren verstehen. Die Prädikatenlogik erlernen. Den Resolutionskalkül beherrschen. Grenzen der Logik kennen lernen. Logikprogrammierung mit Prolog durchführen können.
o Die Chomsky-Hierarchie verstehen. Formale Sprachen mit Hilfe von Grammatiken erzeugen können. Zentrale Ergebnisse zu regulären und kontextfreien Sprachen beherrschen und nutzen können, insbesondere Pumping-Lemmata, reguläre Ausdrücke und CYK-Algorithmus. Anwendungsmöglichkeiten formaler Sprachen wiedergeben können. Abschlusseigenschaften und Entscheidbarkeitsergebnisse für die verschiedenen Sprachtypen kennen.
o Zentrale Ergebnisse zu endlichen Automaten und Kellerautomaten verstehen und anwenden können. Weitere Automatenmodelle kennen lernen und verwenden können, z.B. Transduktor.
o Formale Modellierung mit Petrinetzen beherrschen, insbesondere Geschäftsprozessmodellierung. Analysemethoden für Petrinetze anwenden können.
o Verschiedene Konzepte und Varianten von Turingmaschinen und deren Ausdrucksmächtigkeit erlernen und anwenden können. Zusammenhänge verschiedener Berechenbarkeitsbegriffe und Programmiersprachenkonzepte erlernen. Zusammenhang von Turingmaschinen und Computern sowie die Church'sche These verstehen. Zentrale Entscheidbarkeitsbegriffe und deren Zusammenhänge herleiten können. Grenzen der Berechenbarkeit bzw. algorithmischen Lösbarkeit und das Halteproblem verstehen. Unentscheidbarkeit von Problemen mit Reduktion beweisen können.
o Algorithmische Komplexität nach dem O-Kalkül beherrschen. Zentrale Ergebnisse zu Komplexitätsklassen für Probleme (Komplexitätstheorie) erlernen. Grenzen der effizienten Berechenbarkeit und das SAT-Problem verstehen. NP-Vollständigkeit von Problemen mit polynomieller Reduktion beweisen können.
 
Inhalt:
1 Logik
2 Formale Sprachen
3 Automaten
4 Petrinetze
5 Berechenbarkeitstheorie
6 Komplexitätstheorie
 
Literatur:
D. Hoffmann: Theoretische Informatik, Hanser, 2015
W. Ertel: Grundkurs Künstliche Intelligenz, Springer Vieweg, 2013
R. Socher: Theoretische Grundlagen der Informatik, Fachbuchverlag Leipzig, 2003.
J. Dassow: Logik für Informatiker, Teubner, 2005.
J. E. Hopcroft, R. Motwani, J. D. Ullman: Einführung in Automatentheorie, Formale Sprachen und Berechenbarkeit, Pearson, 2011.
 
Voraussetzungen:
Programmieren, Grundlagen der Informatik, Mathematik-Grundlagen
 
Weitere Links:
Webseite mit Videos zur Vorlesung von Prof. Ertel 

Leistungsnachweis:
lt. aktueller SPO, gültig ab WS1718: PF benotet

Am Ende des Semesters findet eine 90-minütige Klausur statt. Durch Vorführen und Erklären von Übungsaufgaben können im Laufe des Semesters Bonuspunkte für die Klausur erworben werden.
 
 

LSF Info-Portal    Aktuelle Anzahl Nutzer: 1378 Fehler melden  |  Impressum